1. E. Raymundo-Pinero, P. Azais, T. Cacciaguerra, D. Cazorla-Amoros, A. Linares-Solano and F. Beguin, KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization, Carbon 43(4), 786-795 (2005).

2. D. Lozano-Castello, M.A. Lillo-Rodenas, D. Cazorla-Amoros and A. Linares-Solano, Preparation of activated carbons from Spanish anthracite I. Activation by KOH, Carbon 39(5), 741-749 (2001).

3. D. Lozano-Castelló, Preparación y Caracterización de materiales carbonosos avanzados para la separación de gases y el almacenamiento de gases y energía, Universidad de Alicante, Alicante, Spain, Ph.D. thesis (2001).

4. D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano and D.F. Quinn, Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size, Carbon 40(7), 989-1002 (2002).

5. M. Jordá-Beneyto, F. Suárez-García, D. Lozano-Castelló, D. Cazorla-Amoros and A. Linares-Solano, Carbon 45(2), 293-303 (2007).

6. C. Zhang, X.S. Lu and A.Z. Gu, How to accurately determine the uptake of hydrogen in carbonaceous materials. Int. J. Hydrogen Energy 29(12), 1271-1276 (2004).

7. T. Kiyobayashi, H.T. Takeshita, H. Tanaka, N. Takeichi, A. Zuttel, L. Schlapbach and N. Kuriyama, Hydrogen adsorption in carbonaceous materials - How to determine the storage capacity accurately, J. Alloy. Compd. 330-332, 666-669 (2002).

8. R.K. Agarwal and J.A. Schwarz, Analysis of high-pressure adsorption of gases on activated carbon by potential-theory, Carbon 26(6), 873-887 (1988).

9. D. Cazorla-Amoros, J. Alcaniz-Monge, M.A. de la Casa-Lillo and A. Linares-Solano, CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons, Langmuir 14(16), 4589-4596 (1998).

10. F. Rodriguez-Reinoso and A. Linares-Solano, in: Chemistry and Physics of Carbon, vol. 21, edited by P.A. Thrower (Marcel Dekker, New York, 1989), pp. 1-146.

11. M. Rzepka, P. Lamp and M.A. Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes, J. Phys. Chem. B 102(52), 10894-10898 (1998).

12. S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine and G. Seifert, Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 102, 10439-10444 (2005).

13. M.M. Dubinin, in: Progress in Surface and Membrane Science, vol. 9, edited by D.A. Cadenhead, J.F. Danielli and M.D. Rosemberg (Academic Press, New York, 1975), pp. 1-70.

14. L. Zhou, Y.P. Zhou and Y. Sun, Enhanced storage of hydrogen at the temperature of liquid nitrogen. Int. J. Hydrogen Energy 29(3), 319-322 (2004).

15. D. Lozano-Castello, J. Alcaniz-Monge, M.A. de la Casa-Lillo, D. Cazorla-Amoros and A. Linares-Solano, Advances in the study of methane storage in porous carbonaceous materials, Fuel 81(14), 1777-1803 (2002).

16. S. Barrett, Patent analysis identifies trends in fuel cell R&D. Fuel Cells Bull. 2005, 12-13 (2005).

Requimte/CQFB, Departamento de Química, Faculdade de Ciencias e Tecnología, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

Abstract. The current status of adsorbed natural gas technology for the vehicle fueling sector is reviewed. It is shown that there are solutions to the all of the problems associated to adsorption storage, and that it is possible to build a light, compact, and efficient system for storage, distribution, and dispensing of natural gas. The practical achievement of this objective is essential for the natural gas vehicle to create a strong and sustained interest of the automotive market.

Key words: Natural gas; adsorption storage; gaseous fuels; natural gas vehicles

0 0

Post a comment