References

[1] Buffle, J., Wilkinson, K.J., Stoll, S., Filella, M. and Zhang, J. (1998). A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ. Sci. Technol., 32, 2887-2897.

[2] Senesi, N. (1996). Fractals in general soil science and in soil biology and biochemistry. In Soil Biochemistry, Stotzky, G. and Bollag, J.M. (eds), Vol. 9. Marcel Dekker, New York, pp. 415-472.

[3] Elimelech, M., Gregory, J., Jia, X. and Williams, R. (1995). Particle Deposition and Aggregation. Butterworth-Heinemann, London.

[4] Senesi, N. (1994). The fractal approach to the study of humic substances. In Humic Substances in the Global Environment and Implications in Human Health, Senesi, N. and Miano, T.M. (eds). Elsevier, Amsterdam, pp.3-41.

[5] Stoll, S. and Buffle, J. (1995). Computer simulations of colloids and macromolecules. Aggregate formation. Chimia, 49, 300-307.

[6] Logan, B.E. and Wilkinson, D.B. (1989). Fractal geometry of marine snow and other biological aggregates. Limnol. Oceanogr., 35, 130-136.

[7] Jackson, G.A. and Burd, A. (1998). Aggregation in the marine environment: a critical review. Environ. Sci. Technol., 32, 2805-2814.

[8] Li, X.Y., Passow, U. and Logan, B.E. (1998). Fractal dimensions of small (15-200 |xm) particles in Eastern Pacific coastal waters. Deep-Sea Res., 45, 115-131.

[9] Ferretti, R., Zhang, J. and Buffle, J. (1997). Kinetics of hematite aggregation by polyacrylic acid: effect of polymer molecular weights. Colloids Surf. A, 121, 203-215.

[10] Ferretti, R., Zhang, J. and Buffle, J. (1998). Flocculation of hematite with polyacrylic acid: fractal structures in the reaction and diffusion-limited aggregation regimes. J. Colloid Interface Sci., 208, 509-517.

[11] Zhang, J. and Buffle, J. (1996). Multi-method determination of the fractal dimension of hematite aggregates. Colloids Surf. A, 107, 175-187.

[12] Ferretti, R., Stoll, S., Zhang, J. and Buffle, J. (2003). Flocculation of hematite particles by a comparatively large rigid polysaccharide: schizophyllan. J. Colloid Interface Sci., 266, 328-338.

[13] Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. W.H. Freeman, New-York.

[14] Meakin, P. (1998). Fractals, Scaling and Growth Far from Equilibrium. Cambridge University Press, Cambridge.

[15] Jullien, R. and Botet, R. (1987). Aggregation and Fractal Aggregates. World Scientific Publishing, Singapore.

[16] Feder, J. (1988). Fractals. Plenum Press, New York.

[17] Rizzi, F., Stoll, S., Senesi, N. and Buffle, J. (2004). A transmission electron microscopy study of fractal properties and aggregation processes of humic acids. Soil Sci., 169, 765-775.

[18] Tambo, N. and Watanabe, Y. (1979). Physical characteristics of flocs. Water Res., 13, 409-419.

[19] Kolb, M., Botet, R. and Jullien, R. (1983). Scaling of kinetically growing clusters. Phys. Rev. Lett., 51, 1123-1126.

[20] Meakin, P. (1983). Formation of fractal clusters and networks by irreversible diffusion limited aggregation. Phys. Rev. Lett., 51, 1119-1122.

[21] Weitz, D. and Olivera, M. (1984). Fractal structures formed by kinetic aggregation of aqueous gold colloids. Phys. Rev. Lett., 52, 1433-1436.

[22] Jullien, R., Botet, R. and Mors, P.M. (1987). Computer simulations of cluster-cluster aggregation. Faraday Discuss. Chem. Soc., 83, 125-127.

[23] Derjarguin, B.V. and Landau, L. (1941). Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physiochim. 14, 633-662.

[24] Verwey, E.J.W. and Overbeck, J.Th.G. (1948). Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam.

[25] McGown, D.N.L. and Parfitt, G.D. (1967). Improved theoretical calculation of the stability ratio for colloidal systems. J. Phys. Chem., 71, 449-450.

[26] McBride, M.B. (1994). Environmental Chemistry of Soils. Oxford University Press, New York.

[27] Greenland, D.J. and Hayes, M.H.B. (1978). The Chemistry of Soil Constituents. Wiley-Interscience, London.

[28] Israelachvili, J. (1992). Intermolecular and Surface Forces. Academic Press, London.

[29] Witten, T. and Sanders, L. (1981). Diffusion-limited aggregation, a kinetic critical phenomena. Phys. Rev. Lett., 47, 1400-1403.

[30] Meakin, P. and Deutch, J.M. (1983). Monte Carlo simulation of diffusion controlled colloid growth rates in two and three dimensions. J. Chem. Phys., 80, 2115-2122.

[31] Family, F., Meakin, P. and Vicsek, T. (1985). Cluster size distribution in chemically controlled cluster-cluster aggregation. J. Chem. Phys., 83, 4144-4150.

[32] Broide, M.L. and Cohen, R.J. (1992). Measurements of cluster-size distributions arising in salt-induced aggregation of polystyrene microspheres. J. Colloid Interface Sci., 153, 493-508.

[33] Pefferkorn, E., Stoll, S., Elaissari, H. and Varoqui, R. (1991). Polymer induced flocculation of latex particles aggregation process and related cluster size distributions. Particul. Sci. Technol., 23, 76-89.

[34] Stoll, S., Lanet, V. and Pefferkorn, E. (1993). Kinetics and modes of destabilization of antibody-coated polystyrene latices in the presence of antigen: reactivity of the system IgG-IgM, J. Colloid Interface Sci., 157, 302-311.

[35] Elimenech, M. (1992). Predicting collision efficiencies of colloidal particles in porous media. Water Res., 26, 1-8.

[36] Romero, M.S., Martin-Rodriguez A. and de las Nieves, F.J. (2001). Electros-teric stabilization of polymer colloids with different functionality. Langmuir, 17, 3505-3511.

[37] Fuchs, N. (1934). Effect of the charge of aerosols on their stability. Z. Phys., 89,736-742.

[38] Honig, E.P., Roebersen, G.J. and Wiersema, P.H. (1971). Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids. J. Colloid Interface Sci., 36,97-109.

[39] Sposito, G. (1997). Scaling invariance of the von Smoluchowski rate law. Colloids Surf. A, 120, 101-110.

[40] Lin, M.Y., Lindsay, H.M., Weitz, D.A. Ball, R.C., Klein, R. and Meakin, P. (1989). Universality in colloid aggregation. Nature, 339, 360-362.

[41] Von Smoluchowski, M. (1916). Drei Vorträge über Diffusion, Brownsche Molekular bewegung und Koagulation von Kolloidteilchen. Phys. Z., 17, 585-599.

[42] Swift, D.L. and Friedlander, S.K. (1964). The coagulation of hydrosols by Brownian motion and laminar shear flow. J. Colloid Sci., 19, 621-647.

[43] Lushnikov, A.A. (1973). Evolution of coagulating systems. J. Colloid Interface Sci., 45, 549-556.

[44] Brock, J.R. and Hidy, G.M. (1965). Collision-rate theory and the coagulation of free-molecule aerosols. J. Appl. Phys., 36, 1857-1862.

[45] Vicsek, T. and Family, F. (1984). Pattern formation in diffusion-limited aggregation. Phys. Rev. Lett., 53, 2281-2284.

[46] Kolb, M. and Jullien, R. (1984). Chemically limited versus diffusion limited aggregation. J. Phys. Lett. Paris, 45, 977-981.

[47] Jullien, R., Kolb, M. and Botet, R. (1984). Scaling properties of growth by kinetic clustering of clusters. In Kinetics, Aggregation, Gelation, Family. F. and Landau, D.P. (eds). North Holland, Amsterdam, pp. 101-109.

[48] Meakin, P., Vicsek, T. and Family, F. (1985). Dynamic cluster-size distribution in cluster-cluster aggregation: effects of cluster diffusivity. Phys. Rev. B: Condens. Matter, 31, 564-569.

[49] Ziff, M.R., McGrady, E.D. and Meakin, P. (1985). On the validity of Smoluchowski's equation for cluster-cluster aggregation kinetics. J. Chem. Phys., 82, 5269-5274.

[50] Aubert, C. and Cannell, D.S. (1986). Restructuring of colloidal silica aggregates. Phys. Rev. Lett., 56, 738-741.

[51] Liu, J., Shih, W.Y., Sarikaya, M. and Aksay, I.A. (1990). Fractal colloidal aggregates with finite interparticle interactions: Energy dependence of the fractal dimension. Phys. Rev. A., 41,3206-3213.

[52] Dimon, P., Sinha, S.K., Weitz, D.A., Safinya, C.R. Smith, G.S., Varady, W.A. and Lindsay, H.M. (1986). Structure of aggregated gold colloids. Phys. Rev. Lett., 57, 595-598.

[53] Ouali, L. Stoll, S. and Pefferkorn, E. (1995). The mechanisms and kinetics of the fragmentation of colloidal aggregates induced by electrostatic and electrosteric repulsion. In Fragmentation Phenomena, Beysens, D., Campi, X. and Pefferkorn, E. (eds). World Scientific, Singapore, pp. 64-76.

[54] Familly, F. Meakin, P. and Deutch, J.M. (1986). Kinetics of coagulation with fragmentation: scaling behaviour and fluctuations. Phys. Rev. Lett., 57, 727-730.

[55] Sorensen, C.M., Zhang, H.X. and Taylor, T.W. (1987). Cluster-size evolution in a coagulation-fragmentation system. Phys. Rev. Lett., 59, 363-366.

[56] Meakin, P. and Ernst, M.H. (1988). Scaling in aggregation with breakup simulations and mean-field theory. Phys. Rev. Lett., 60, 2503-2506.

[57] Pefferkorn, E. and Stoll, S. (1990). Aggregation/fragmentation processes in unstable latex suspensions. J. Colloid Interface Sci., 138, 261-271.

[58] Meakin, P. and Jullien, R. (1985). Structural readjustment effects in cluster-cluster aggregation. J. Phys. Paris, 46, 1543-1552.

[59] Meakin, P. and Jullien, R. (1988). The effects of restructuring on the geometry of clusters formed by diffusion-limited, ballistic and reaction-limited cluster-cluster aggregation. J. Chem. Phys., 89, 246-250.

[60] Bowen, M.S., Broide, M.L. and Cohen, R.J. (1985). Determination of cluster size distributions using an optical pulse particle size analyser. J. Colloid Interface Sci., 105, 605-616.

[61] Meakin, P. (1985). The effects of random bond breaking on diffusion limited cluster-cluster aggregation. J. Chem. Phys., 83, 3645-3649.

[62] Kolb, M. (1986). Reversible diffusion-limited cluster aggregation. J. Phys. A: Math. Gen., 19, 263-268.

[63] Shih, W.Y.,Aksay, I.A. and Kikuchi, R. (1987). Reversible-growth model: cluster-cluster aggregation with finite binding energies. Phys. Rev. A, 36, 5015-5019.

[64] Haw, M.D., Sievwright, M., Poon, W.C.K. and Pusey, P.N. (1995). Cluster-cluster gelation with finite bond energy. Adv. Colloid Interface Sci., 62, 1-16.

[65] Jin, J.M., Parbhakar, K. andDao, L.H. (1996). Gel formation by reversible cluster-cluster aggregation. Phys. Rev. E,54, 997-1000.

[66] Terao, T. and Nakayama, T. (1998). Sol-gel transition of reversible cluster-cluster aggregations. Phys. Rev. E, 58, 3490-3494.

[67] Haw, M.D., Sievwright, M., Poon, W.C.K. and Pusey, P.N. (1995). Cluster-cluster gelation with finite bond energy. Adv. Colloid Interface Sci., 62, 1-16.

[68] Diez-Orrite, S., Stoll, S. and Schurtenberger, P. (2005). Study of aggregate formation in colloidal systems: off-lattice Monte Carlo simulations. Soft Matter, 1, 364-371.

[69] Tirado-Miranda, M., Schmitt, A., Callejas-Fernández, J. and Fernández-Barbero, A. (1999). Colloidal clusters with finite binding energies: fractal structure and growth mechanism. Langmuir, 15, 3437-3444.

[70] Kim, A.Y. and Berg, J.C. (2000). Fractal heteroaggregation of oppositely charged colloids. J. Colloid Interface Sci., 229, 607-614.

[71] Tomacz, E., Csanaky, C. and Illés, E. (2001). Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence, Colloid Polym. Sci., 279, 484-492.

[72] Yates, P.D., Franks, G.V., Biggs, S. and Jameson, G.J. (2005). Heteroaggregation with nanoparticles: effect of particle size ratio on optimum particle dose. Colloids Surf. A, 255, 85-90.

[73] Stoll, S. and Pefferkorn, E. (1993). Kinetics of heterocoagulation, J. Colloid Interface Sci., 160, 149-157.

[74] Meakin, P. and Djordjevic, Z.B. (1986). Cluster-cluster aggregation in two monomer systems. J. Phys. A: Math. Gen., 19, 2137-2153.

[75] López-López, J.M., Schmitt, A., Callejas-Fernandez, J. and Hidalgo-Álvarez, R. (2004). Cluster discrimination in electrostatic heteroaggregation processes. Phys. Rev. E, 69, 11 404-11 410.

[76] López-López, J.M., Moncho-Jordá, A., Schmitt and Hidalgo-Álvarez, R. (2005). Formation and structure of stable aggregates in binary diffusion-limited cluster-cluster aggregation processes. Phys. Rev. E, 72, 31 401-31 409.

[77] Pefferkorn, E., Pichot, C. and Varoqui, R. (1988). Size distribution of latex aggregates in flocculating dispersions. J. Phys. Paris, 49, 983-989.

[78] Varoqui, R. and Pefferkorn, E. (1988). Measurements of cluster size distribution for latex particles flocculating in the presence of flexible water-soluble polymers. Macromolecules, 21, 3096-3101.

[79] Pefferkorn, E. and Stoll, S. (1990). Cluster fragmentation in electrolyte induced aggregation of latex. J. Chem. Phys., 92, 3112-3117.

[80] Stoll, S. and Buffle, J. (1996). Computer simulation of bridging flocculation processes: the role of colloid to polymer concentration ratio on aggregation kinetics. J. Colloid Interface Sci., 180, 548-563.

[81] Stoll, S. and Buffle, J. (1998). Computer simulation of flocculation processes: the roles of chain conformation and chain/colloid concentration ratio in the aggregate structures. J. Colloid Interface Sci., 205, 290-300.

[82] Xia, J. and Dubin, P.L. (1994). Protein-polyelectrolyte complexes. In Macromolecular Complexes in Chemistry and Biology, Dubin, P. and Bock, D. (eds). Springer-Verlag, Berlin, pp. 247-271.

[83] Darnell, J.E., Lodish, H. and Baltimore, D. (1995). Molecular Cell Biology, 3rd edition. Scientific American Books, New-York.

[84] Hara, M. (1993). Polyelectrolytes: Sciences and Technology. Marcel Dekker, New York.

[85] Radler, J.O., Koltover, I., Salditt, T. and Safinya, C.R. (1997). Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science, 275, 810-814.

[86] Chodanowski, P. and Stoll, S. (2001). Polyelectrolyte adsorption on charged particles: a Monte Carlo approach. Macromolecules, 34, 2320-2328.

[87] Chodanowski, P. and Stoll, S. (2001). Polyelectrolyte adsorption on charged particles: size effects, J. Chem. Phys., 115, 4951-4960.

[88] Stoll, S. and Chodanowski, P. (2002). Polyelectrolyte adsorption on an oppositely charged spherical particle. chain rigidity effects. Macromolecules, 35, 9556-9562.

[89] Brynda, M., Chodanowski, P. and Stoll, S. (2002). Polyelectrolyte-particle complex formation. Polyelectrolyte linear charge density and ionic concentration effects. Polym.r Colloid Sci., 280, 789-797.

[90] Laguecir, A., Brynda, M. and Stoll, S. (2002). Charged polymer/nanoparticle mixtures: Monte Carlo simulations, Chimia, 56, 702-706.

[91] Laguecir, A., Stoll, S., Kirton, G. and Dubin, P.L. (2003). Interactions of a polyanion with a cationic micelle: comparison of Monte Carlo simulations with experiment. J. Phys. Chem. B, 107, 8056-8065.

[92] Ulrich, S., Laguecir, A. and Stoll, S. (2004). Complex formation between a nanoparticle and a weak polyelectrolyte. Monte Carlo simulations. J. Nanopartic. Res., 6, 595-603.

[93] Laguecir, A. and Stoll, S. (2005). Adsorption of a weakly charged polymer on an oppositely charged colloidal particle: Monte Carlo simulations investigation. Polymer, 46, 1359-1372.

[94] Ulrich, S., Laguecir, A. and Stoll, S. (2005). Titration of hydrophobic polyelectrolytes using Monte Carlo simulations. J. Chem. Phys., 122, 94 911-94 919.

[95] Kremer, K. and Binder, K. (1988). Monte Carlo simulation of lattice models for macromolecules. Comput. Phys. Rep., 7, 259-310.

[96] Nguyen, T.T. and Shklovskii, B.I. (2001). Overcharging of a macroion by an oppositely charged polyelectrolyte. PhysicaA, 293, 324-338.

[97] Chen, J.F., Luo, Y., Xu, J.H. Chen, Q.M. and Guo, J. (2006). Visualization study on sedimentation of micron iron oxide particles. J. Colloid Interface Sci., 301, 549-553.

[98] Johnson, C.P., Xiaoyan, L. and Logan, B. (1996). Settling velocities of fractal aggregates. Environ. Sci. Technol., 30, 1911-1918.

[99] Chellam, S. and Wiesner, M. (1993). Fluid mechanics and fractal aggregates. Water Res., 27, 1493-1496.

[100] Logan, B.E. and Hunt, J.R. (1987). Advantages to microbes of growth in permeable aggregates in marine systems. Limnol. Oceanogr., 32, 1034-1048.

[101] Adler, P.M. (1981). Interaction of unequal spheres: I. Hydrodynamic interaction: colloidal forces. J. Colloid Interface Sci., 84, 461-473.

[102] Gibbs, R.J. (1985). Estuarine flocs: their size, settling velocity and density. J. Geophys. Res., 90,3249-3251.

[103] Kajihara, M. (1971). Settling velocity and porosity of large suspended particles. J. Oceanogr. Soc. Jpn., 27, 158-161.

[104] Yao, K.M., Habbitian, M.T. and O'Melia, C.R. (1971). Water and waste water filtration. Concepts and applications. Environ. Sci. Technol., 5, 1105-1112.

[105] Rajagopalan, R. and Tien, C. (1976). Trajectory analysis of deep bed filtration with the sphere-in-cell porous media model. Am. Inst. Chem. Eng. J., 22, 523-528.

[106] Valiolis, I.A. and List, E.J. (1984). Numerical simulation of a sedimentation basin. 1. Model development. Environ. Sci. Technol., 18, 242-247.

[107] Han, M. and Lawler D.F. (1992). The (relative) insignificance of G in flocculation. J. Am. Water Works Assoc., 84, 79-91.

[108] Hutchinson, G.E. (1967). Introduction to lake biology and limnoplankton. In A Treatise on Limnology, vol. 2, Edmonson, Y.H. (ed.). John Wiley & Sons, Ltd, New York, pp. 27-93.

[109] Komar, P.D., Morse, A.P. and Small, L.F. (1981). An analysis of sinking rates of natural copepod and euphausiid fecal pellets. Limnol. Oceanogr., 26, 172-180.

[110] Namer, J. and Ganczarczyk, J.J. (1993). Settling properties of digested sludge particle aggregates. Water Res., 27, 1285-1294.

[111] Andreadakis, A.D. (1993). Physical and chemical properties of activated sludge floc. Water Res., 27, 1707-1714.

[112] Alldredge, A.L. and Gotschalk, C. (1988). In situ settling behavior of marine snow. Limnol. Oceanogr., 33, 339-351.

[113] Lasso, I.A. and Weideman, P.D. (1986). Stokes drag on hollow cylinders and conglomerates, Phys. Fluids, 29, 3921-3934.

[114] Li, X. and Logan, B. (1995). Size distributions and fractal properties of particles during a simulated phytoplankton bloom in a mesocosm. Deep Sea Res. II, 42, 125-138.

[115] Hunt, J.R. (1980). Prediction of oceanic particle size distribution from coagulation and sedimentation mechanisms. Particulates in Water: Characterization, Fate, Effects and Removal, Kavanaugh, M.D. and Kekie, J.T. (eds), Advances in Chemistry Series No. 189. American Chemical Society, New Yorkpp. 243-257.

[116] Logan, B. and Wilkinson, D.B. (1991). Fractal dimensions and porosities of Zoo-gloea ramigera and Saccharomyces cerevisae aggregates. Biotechnol. Bioeng., 38, 389-396.

[117] Li D. and Ganczarczyk, J. (1987). Stroboscopic determination of settling velocity, size and porosity of activated sludge flocs. Water Res., 21, 257-262.

[118] Jiang, Q. and Logan, B. (1991). Fractal dimensions of aggregates determined from steady-state size distributions. Environ. Sci. Technol., 25, 2031-2038.

[119] Sutherland, D.N. and Tan, C.T. (1970). Sedimentation of a porous sphere. Chem. Eng. Sci., 25, 1948-1950.

[120] Neale, G., Epstein, N. and Nader, W. (1973). Creeping flow relative to permeable spheres. Chem. Eng. Sci., 28, 1865-1874.

[121] Matsumoto, K. and Suganuma, A. (1977). Settling velocity of a permeable model floc. Chem. Eng. Sci., 32, 445-447.

[122] Masliyah, J.H. and Polikar, M. (1980). Terminal velocity of porous spheres. Can. J. Chem. Eng., 58, 299-302.

[123] Adler, P. (1987). Hydrodynamic properties of fractal flocs. Faraday Discuss. Chem. Soc.,83, 145-152.

[124] Li, D.H. and Ganczarczyk, J. (1988). Flow through activated sludge flocs. Water Res., 22, 789-792.

[125] Nguyen, H.P., Chopard, B. and Stoll, S. (2004). Hydrodynamic properties of fractal aggregates in 2D using lattice Boltzmann simulation. Future Gener. Comput. Syst. (FGCS), 20, 981-991.

[126] Brinkman, H.C. (1947). A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles. Appl. Sci. Res., A1, 27-34.

[127] Masliyah, J.H., Naele, G., Malysa, K. and van de Ven, T.G.M. (1987). Creeping flow over a composite sphere: solid core with porous shell. Chem. Eng. Sci., 42, 245-253.

[128] Gmachowski, L. (1996). Hydrodynamics of aggregated media. J. Colloid. Interface Sci., 178, 80-86.

[129] Rogak, S.N. and Flagan, R.C. (1990). Stokes drag on self-similar clusters of spheres. J. Colloid Interface Sci., 134, 206-218.

[130] Wiltzius, P. (1987). Hydrodynamic behavior of fractal aggregates. Phys. Rev. Lett., 58, 710-713.

[131] Wiltzius, P. and van Saarloos, W. (1987). Reply to a Comment on 'Hydrodynamic behavior of fractal aggregates'. Phys. Rev. Lett., 59, 2123.

[132] Chen, Z.Y., Meakin, P. and Deutch, J.M. (1987). Comment on 'Hydrodynamic behavior of fractal aggregates'. Phys. Rev. Lett., 59, 2121.

[133] Durlofsky, L. and Brady, J.F. (1987). Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids, 30, 3329-3341.

[134] Chen, Z.Y., Deutch, J.M. and Meakin, P. (1984). Translational friction coefficient of diffusion limited aggregates. J. Chem. Phys., 80, 2982-2983.

[135] Meakin, P. and Deutch, J.M. (1987). Properties of the fractal measure describing the hydrodynamic force distributions for fractal aggregates moving in a quiescent fluid. J. Chem. Phys., 86, 4648-4656.

[136] Meakin, P., Chen, Z.Y. and Deutch, J.M. (1985). The translational friction coefficient and time dependent cluster size distribution of three dimensional cluster-cluster aggregation. J. Chem. Phys., 82, 3786-3789.

[137] Doi, M. and Chen, D. (1989). Simulation of aggregating colloids in shear flow. J. Chem. Phys., 90, 5271-5279.

[138] Chen, D. and Doi, M. (1989). Simulation of aggregating colloids in shear flow. J. Chem. Phys., 91, 2656-2663.

[139] Potanin, A. (1993). On the computer simulation of the deformation and breakup of colloidal aggregates in shear flow. J. Colloid Interface Sci., 157, 399-410.

[140] Tam, C.K. (1969). The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech., 38, 537-545.

[141] Childress, S. (1972). Viscous flow past a random array of spheres.J. Chem. Phys., 56, 2527-2539.

[142] Veerapaneni, S. and Wiesner, M. (1996). Hydrodynamics of fractal aggregates with radially varying permeability. J. Colloid. Int. Sci., 177, 45-57.

[143] Kim, A.S. and Stolzenbach, K.D. (2002). The permeability of synthetic fractal aggregates with realistic three-dimensional structure. J. Colloid Interface Sci., 253, 315-328.

[144] Sonntag, R.C. and Russel, W.B. (1987). Structure and breakup of flocs subjected to fluid stresses. J. Colloid Interface Sci., 115, 378-389.

[145] Adler, P.M. and Mills, P.M. (1975). Motion and rupture of a porous sphere in a linear flow field. J. Rheol., 23, 25-37.

[146] Van Sarloos, W. (1987). On the hydrodynamic radius of fractal aggregates. PhysicaA, 147, 280-296.

[147] Kirkwood, J.G. and Riseman, J. (1948). The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys., 16, 565-573.

0 0

Post a comment