[1] Dillow, A.K., Brown, J.S., Liotta, C.L., Eckert, C.A., Supercritical fluid tuning of reactions rates: The cis-trans isomerization of 4-4 '-disubstituted azobenzenes, JPhys Chem A, 102, 7609-7617, 1998.

[2] Brown, J.S., Lesutis, H.P., Lamb, D.R., Bush, D., Chandler, K., West, B.L., Liotta, C.L., Eckert, C.A., Schiraldi, D., Hurley, J.S., Supercritical fluid separation for selective quaternary ammonium salt promoted esterification of terephthalic acid, IndEng Chem Res, 38, 3622-3627, 1999.

[3] Thompson, R.L., Glaser, R., Bush, D., Liotta, C.L., Eckert, C.A., Rate variations of a hetero-Diels-Alder reaction in supercritical fluid CO2, Ind Eng Chem Res, 38, 4220-4225, 1999.

[4] Brown, R.A., Pollet, P., McKoon, E., Eckert, C.A., Liotta, C.L., Jessop, P.G., Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical carbon dioxide, J Am Chem Soc, 123, 1254-1255, 2001.

[5] Nolen, S.A., Lu, J., Brown, J.S., Pollet, P., Eason, B.C., Griffith, K.N., Glaser, R., Bush, D., Lamb, D.R., Liotta, C.L., Eckert, C.A., Thiele, G.F., Bartels, K.A., Olefin epoxidations using supercritical carbon dioxide and hydrogen peroxide without added metallic catalysts or peroxy acids, Ind Eng Chem Res, 41, 316-323, 2002.

[6] Eckert, C.A., Liotta, C.L., Bush, D., Brown, J.S., Hallett, J.P., Sustainable reactions in tunable solvents, J Phys Chem B, 108, 18108-18118, 2004.

[7] Koch, D., Leitner, W., Rhodium-catalyzed hydroformylation in supercritical carbon dioxide, J Am Chem Soc, 120, 13398-13404, 1998.

[8] Furstner, A., Ackermann, L., Beck, K., Hori, H., Koch, D., Langemann, K., Liebl, M., Six, C., Leitner, W., Olefin metathesis in supercritical carbon dioxide, J Am Chem Soc, 123, 9000-9006, 2001.

[9] Solinas, M., Jiang, J.Y., Stelzer, O., Leitner, W., A cartridge system for organometallic catalysis: Sequential catalysis and separation using supercritical carbon dioxide to switch phases, Angew Chem Int Edit, 44, 2291-2295, 2005.

[10] Maayan, G., Ganchegui, B., Leitner, W., Neumann, R., Selective aerobic oxidation in supercritical carbon dioxide catalyzed by the H5PV2Mo10O40 polyoxometalate, Chem Commun, 2230-2232, 2006.

[11] Chandler, K., Deng, F.H., Dillow, A.K., Liotta, C.L., Eckert, C.A., Alkylation reactions in near-critical water in the absence of acid catalysts, Ind Eng Chem Res, 36, 5175-5179, 1997.

[12] Chandler, K., Liotta, C.L., Eckert, C.A., Schiraldi, D., Tuning alkylation reactions with temperature in near-critical water, Aiche J, 44, 2080-2087, 1998.

[13] Lesutis, H.P., Glaser, R., Liotta, C.L., Eckert, C.A., Acid/base-catalyzed ester hydrolysis in near-critical water, Chem Commun, 2063-2064, 1999.

[14] Patrick, H.R., Griffith, K., Liotta, C.L., Eckert, C.A., Glaser, R., Near-critical water: A benign medium for catalytic reactions, Ind Eng Chem Res, 40, 6063-6067, 2001.

[15] Nolen, S.A., Liotta, C.L., Eckert, C.A., Glaser, R., The catalytic opportunities of near-critical water: a benign medium for conventionally acid and base catalyzed condensations for organic synthesis, Green Chem, 5, 663-669, 2003.

[16] Jessop, P.G., Subramaniam, B., Gas-expanded liquids, Chem Rev, 107, 2666-2694, 2007.

[17] Ablan, C.D., Hallett, J.P., West, K.N., Jones, R.S., Eckert, C.A., Liotta, C.L., Jessop, P.G., Use and recovery of a homogeneous catalyst with carbon dioxide as a solubility switch, Chem Commun, 2972-2973, 2003.

[18] Jessop, P.G., Stanley, R.R., Brown, R.A., Eckert, C.A., Liotta, C.L., Ngo, T.T., Pollet, P., Neoteric solvents for asymmetric hydrogenation: supercritical fluids, ionic liquids, and expanded ionic liquids, Green Chem, 5, 123-128, 2003.

[19] Daintree, L.S., Kordikowski, A., York, P., Separation processes for organic molecules using SCF technologies, Advanced Drug Delivery Reviews, 60, 351-372, 2008.

[20] Eckert, C.A., Bush, D., Brown, J.S., Liotta, C.L., Tuning solvents for sustainable technology, Industrial & Engineering Chemistry Research, 39, 4615-4621, 2000.

[21] Eckert, C.A., Chandler, K., Tuning fluid solvents for chemical reactions, J Supercrit Fluid, 13, 187-195, 1998.

[22] Eckert, C.A., Knutson, B.L., Debenedetti, P.G., Supercritical fluids as solvents for chemical and materials processing, Nature, 383, 313-318, 1996.

[23] Eckert, C.A., Vanalsten, J.G., Stoicos, T., Supercritical Fluid Processing, Environ Sci Technol, 20, 319-325, 1986.

[24] Jessop, P.G., Homogeneous catalysis using supercritical fluids: Recent trends and systems studied, Journal of Supercritical Fluids, 38, 211-231, 2006.

[25] Ramsey, E., Sun, Q.B., Zhang, Z.Q., Zhang, C.M., Gou, W., Mini-Review: Green sustainable processes using supercritical fluid carbon dioxide, Journal of Environmental Sciences-China, 21, 720-726, 2009.

[26] Rayner, C.M., The potential of carbon dioxide in synthetic organic chemistry, Organic Process Research & Development, 11, 121-132, 2007.

[27] Rezaei, K., Temelli, F., Jenab, E., Effects of pressure and temperature on enzymatic reactions in supercritical fluids, Biotechnology Advances, 25, 272-280, 2007.

[28] Tang, Z., Xie, W.H., Zong, B.N., Min, E.Z., Recent research progress of chemical reactions under supercritical conditions, Chinese Journal of Chemical Engineering, 12, 498-504, 2004.

[29] Hines, A.L., Maddox, R.N., Mass Transfer Fundamentals and Applications Prentice Hall, New Jersey, 1985.

[30] Bird, R.B., Stewart, W.E., Lightfoot, E.N., Transport Phenomena, Second ed., Wiley India, New Delhi, 2006.

[31] Blasucci, V.M., Husain, Z.A., Fadhel, A.Z., Donaldson, M.E., Vyhmeister, E., Pollet, P., Liotta, C.L., Eckert, C.A., Combining Homogeneous Catalysis with Heterogeneous Separation using Tunable Solvent Systems, Journal of Physical Chemistry A, 114, 3932-3938, 2010.

[32] El Ali, B., Tijani, J., Fettouhi, M., El-Faer, M., Al-Arfaj, A., Rhodium(I) and rhodium(III)-heteropolyacids supported on MCM-41 for the catalytic hydroformylation of styrene derivatives, Appl Catal a-Gen, 283, 185-196, 2005.

[33] Hallett, J.P., Ford, J.W., Jones, R.S., Pollet, P., Thomas, C.A., Liotta, C.L., Eckert, C.A., Hydroformylation catalyst recycle with gas-expanded liquids, Industrial & Engineering Chemistry Research, 47, 2585-2589, 2008.

[34] Nair, V.S., Mathew, S.P., Chaudhari, R.V., Kinetics of hydroformylation of styrene using homogeneous rhodium complex catalyst, Journal of Molecular Catalysis a-Chemical, 143, 99-110, 1999.

[35] Vinci, D., Donaldson, M., Hallett, J.P., John, E.A., Pollet, P., Thomas, C.A., Grilly, J.D., Jessop, P.G., Liotta, C.L., Eckert, C.A., Piperylene sulfone: a labile and recyclable DMSO substitute, Chem Commun, 1427-1429, 2007.

[36] Phan, L., Chiu, D., Heldebrant, D.J., Huttenhower, H., John, E., Li, X.W., Pollet, P., Wang, R.Y., Eckert, C.A., Liotta, C.L., Jessop, P.G., Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures, Ind Eng Chem Res, 47, 539-545, 2008.

[37] Jessop, P.G., Heldebrant, D.J., Li, X.W., Eckert, C.A., Liotta, C.L., Green chemistry - Reversible nonpolar-to-polar solvent, Nature, 436, 1102-1102, 2005.

[38] Heldebrant, D.J., Jessop, P.G., Thomas, C.A., Eckert, C.A., Liotta, C.L., The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide, J Org Chem, 70, 5335-5338, 2005.

[39] Hart, R., Pollet, P., Hahne, D.J., John, E., Llopis-Mestre, V., Blasucci, V., Huttenhower, H., Leitner, W., Eckert, C.A., Liotta, C.L., Benign coupling of reactions and separations with reversible ionic liquids, Tetrahedron, 66, 1082-1090, 2010.

[40] Blasucci, V., Hart, R., Mestre, V.L., Hahne, D.J., Burlager, M., Huttenhower, H., Thio, B.J.R., Pollet, P., Liotta, C.L., Eckert, C.A., Single component, reversible ionic liquids for energy applications, Fuel, 89, 1315-1319, 2010.

[41] Blasucci, V.M., Hart, R., Pollet, P., Liotta, C.L., Eckert, C.A., Reversible ionic liquids designed for facile separations, Fluid Phase Equilibria, 294, 1-6, 2010.

This page intentionally left blank

0 0

Post a comment